Selected Article

Title

不銹鋼扣件之成型模具表面鍍膜研究

Hard coating on forming dies for Stainless steel fastener

Creator

劉冠良Ku-Lin Liu

Description

[[abstract]]本研究係針對螺紋成型模具牙板表面鍍膜讓牙板在滾壓螺紋時其表面之摩擦係數降低、抗磨耗性及使用壽命提高。第一階段使用SS304不銹鋼試片探討披覆TiN、TiCN、CrN三種鍍膜後,找出附著性最佳之鍍膜,第二階段則使用SKD11之牙板試片濺鍍適合之鍍膜來進行測試,以期提高牙板之使用壽命。 試片鍍膜後經由磨耗試驗得知,TiN之摩擦係數為0.4537,TiCN之摩擦係數為0.1653,CrN之摩擦係數為0.3174,摩擦係數愈低,耐磨耗性愈佳。再者進行壓痕試驗後,將壓痕的部位使用光學顯微鏡觀察比對得知三種鍍膜之附著性以TiCN及CrN較為良好,再加上三種鍍膜經過磨耗試驗後以TiCN膜表面遭磨損之情形最不顯著,摩擦係數也最小,綜合以上兩因素選定TiCN為最適合濺鍍於牙板表面之鍍膜。牙板濺鍍TiCN膜後,與一組未鍍膜之牙板同時進行測試,測試生產螺絲材質為中碳鋼,滾壓過程使用切削液,在經過測試120小時後,觀察兩組牙板表面,未濺鍍之牙板明顯的破壞的較嚴重。未濺鍍之牙板使用壽命可生產360小時即無法再使用,但經過鍍膜後可生產456小時。測試的過程中承受高溫材料有軟化現象發生,將牙板進行切片SEM Mapping分析,觀察試片有無高溫擴散的情形產生,經由Mapping後比對,並無此現象發生。最後由 SEM 分析經過磨耗後之牙板表面還是有存在TiCN鍍膜,顯示鍍膜磨耗情形為括損疲勞磨耗。 The research is utilized the thread shape mold dental plate surface coatings to let the dental plate surface of friction coefficient reduce, abrasion resistance and its use life increase while dental plate rolling the thread. The first phase uses SS304 stainless steel to explore coating TiN, TiCN,CrN and then finding the best adhesive coatings. The second phase uses SKD11 of dental plate sputtering suitable coating to test and to raise dental plate using life. After previews coating by abrasive test we know, The friction coefficient of TiN,TiCN,CrN are o.3174,0.094 and 0.1526 respectively. The lower friction coefficient is the better for abrasion, The TiCN coating possess the higher bonding strength as well as lower friction coefficient compare with that of TiN or CrN coating, We selected TiCN coating to farther evaluate the life time and failure mechanisms, accordingly. The TiCN coated and uncoated molds were evaluated under mild steel production process, and life time was 456 hours and 360 hours, respectively. After long periods operation, No any interdiffusion between coating and steel substrate was detected under SEM Mapping. The failure mechanisms is possibly due to the cohesion loss fatigue in TiCN coating.

[[note]]中文部份 [1]王千億,王俊傑編著,機械製造Ι,全華科技圖書公司,1998 [2]王俊志,張煌權,2003.7 “SKD11模具鋼切削現象之探討-切速及工件硬度之影響”,機械月刊29卷7期,pp.8~18 [3]甘德新,多層硬質鍍膜之機械性能與其電子顯微結構之分析研究,金屬工業研發中心,1997 [4]李國維,碳化鎢模具經物理蒸鍍氮化鉻鍍膜對其磨耗特性影響之研究,國立高雄第一科技大學機械與自動化工程所,碩士論文,2001 [5]林文樹,含類鑽碳膜蒸鍍技術,金屬工業研發中心,1998 [6]林義棠,碳氮化鈦鋁(TiAlCN)被覆鍍層機械性質之研究,國立高雄第一科技大學機械與自動化工程所,碩士論文,2003 [7]邱源成,切削加工學講義,國立中山大學,1988 [8]邱源成,磨潤學講義,國立中山大學,1988 [9]金屬工業研發中心,表面改質技術用於耐磨產品之需求專題報告,1994 [10]金屬工業研發中心,金工產業透析-表面改質技術專題報告,1996 [11]洪志宏,氮化鉻鍍膜於高溫控制氣氛下之劣化研究,國立中興大學材料工程研究所,碩士論文,2003 [12]洪敏雄,工具材料表面蒸鍍TiCN研究,國立成功大學,國科會專題研究報告,1984 [13]洪篤傑,液動壓拋光法刀具磨耗研究,國立中山大學機械工程研究所,博士論文,2001 [14]馬承九編著,機械加工,財團法人俊銘基金會,2000 [15]馬承九編著,機械製造(上),東士圖書公司,1986 [16]馬爾欽柯編著,金屬表面摩擦破壞實質,國防工業出版社,1990 [17]張順源,CAD/CAM協同整合製造系統之研究-以牙板模製造為例,中華大學,碩士論文,2003 [18]郭鑑瑩,非平衡磁控物理濺鍍鈦鋁碳氮(TiAlCN)鍍膜於高速鋼基材上之高溫氧化性能研究,國立高雄第一科技大學機械與自動化工程所,碩士論文,2003 [19]陳建仁,多層膜(TiN/TiCN)被覆精密刀具之開發研究,金屬工業研發中心,1995 [20]陳鉅昆,添加碳化矽顆粒之鎳-磷中介層對氮化鈦陶瓷面層磨潤性質之研究,國立成功大學材料科學與工程研究所,博士論文,2003 [21]陳麒翰,不銹鋼平板搓牙製程有限元素法分析之研究,國立成功大學機械工程研究所,碩士論文,2004 [22]陳耀明,TiN鍍膜微結構與性質之研究,國立成功大學,博士論文,2002 [23]楊玉森,抗黏著磨耗鍍膜技術開發,金屬工業研發中心,1998 [24]楊春欽編著,摩擦與磨耗,科技圖書股份有限公司,1986 [25]楊義雄,1992.3 “以鋼為中心之工程用表面處理改質”,機械月刊18卷3期,pp.244~253 [26]楊耀昇,HCD法製備漸進TiCN陶瓷硬質薄膜之研究,國立成功大學材料科學與工程研究所,博士論文,2002 [27]葉國良,氮化鈦/氮化鋁多層膜之磨潤性能研究,國立成功大學機械工程研究所,碩士論文,2003 [28]鄭振東編譯,磨擦漫談,建宏出版社,1991 [29]鍾永文,物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究,國立高雄第一科技大學機械與自動化工程所,碩士論文,2003 [30]顏玉山編著,螺絲製造技術,全華科技圖書公司,1985 [31]http://tw.knowledge.yahoo.com/question/?qid=1005022601360 英文部份 [1]B.Pecz﹐N.Frangis﹐S.Logothetidis﹐I.Alexandrou﹐P.B.Barna﹐J.Stoemeos﹐Thin Solid Films﹐1995,pp.268 [2]C.Liu﹐A.Leyland﹐Q.Bi﹐A.Matthews﹐“Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings”﹐Surface and Coating Technology﹐2001﹐pp.164-173 [3]D.B.Lewis﹐S.R.Bradbury﹐M.Sarwar﹐“The effect of substrate surface preparation on the wear and failure modes of TiN coated high speed steel circular saw blades”﹐Wear 197﹐1996﹐pp.82-88 [4]D.S. Rickerby﹐P.J. Burnett﹐Thin Solid Films﹐1988,pp.157 [5]E.J.Bienk﹐H.Reitz﹐N.J.Mikkelsen﹐“Wear and friction properties of hard PVD coatings”﹐Surface and Coating Technology﹐1995﹐pp.475-480 [6]E.Martinez﹐U.Wiklund﹐J.Esteve﹐F.Montala﹐L.L.Carreras﹐“Tribological performance of TiN supported molybdenum and tantalum carbide coating in abrasion and sliding contact”﹐Wear 253﹐2002﹐pp.1182-1187 [7]I.A.Polonsky﹐T.P.Chang﹐L.M.Keer﹐W.D.Sproul﹐“A study of rolling-contact fatigue of bearing steel coated with physical vapor deposition TiN films:Coating response to cyclic contact stress and physical mechanisms underlying coating effect on the fatigue life”﹐Wear 215﹐1998,pp.191-204 [8]J.M.Schneider﹐A.Voevodin﹐C.Rebholz﹐A.Mattews, J.H.C.Hogg﹐G.B.Lewes﹐M.Eves﹐Surf Coating Technology, 1995﹐pp74-75 [9]J.Takadoum﹐H.Houmid Bennani﹐M.Allouard﹐“Friction and wear characteristics of TiN,TiCN and diamond-like carbon films”﹐Surface and Coating Technology﹐1996﹐pp.232-238 [10]K.J.Ma﹐A.Bloyce﹐T.Bell﹐“Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings”﹐Surface and Coating Technology﹐1995﹐pp.297-302 [11]K.S.Park﹐J.K. Park﹐“Effect of thin film stress on the elastic strain energy of Cr thin film on substrate”﹐1999﹐pp.2177-2184 [12]L.F.Senna﹐C.A.Achete﹐T.Hirsch﹐F.L.Freire Jr.“Structural, chemical, mechanical and corrosion resistance characterization of TiCN coatings prepared by magnetron sputtering”﹐Surface and Coating Technology﹐1997﹐pp.390-397 [13]M.M﹐H.Hoffmann﹐P.Kucher﹐J.Appl.Phys.﹐Thin Solid Films﹐1990﹐pp.68 [14]N.Schell﹐J.H.Petersen﹐J.Bottiger﹐A.Mücklich,J.Chevallier﹐K.P.Andreasen﹐F.Eichhorn﹐“On the development of texture during growth of magnetron- sputtered CrN”﹐Thin Solid Films 426﹐2003﹐pp.100-110 [15]S.Novak,M.Komac,“Wear of cermet cutting tools coated with physically vapour deposited TiN”,Elsevier Science S.A., Surface and coating Technology,Wear 205 ,April 1996,pp.160-168 [16]U.C.Oh,J. H. Je,J.Appl.Phys﹐Thin Solid Films﹐1993﹐pp.1692 [17]Y.L.Su ﹐S.H.Yao﹐Z.L.Leu﹐C.S.Wei﹐C.T.Wu﹐“Comparison of tribological behavior of three films-TiN﹐TiCN and CrN –grown by physical vapor deposition ”﹐Wear 213,1997﹐pp.165-174 [18]Y.L.Su﹐S.H.Yao﹐C.T.Wu﹐“Comparisons of characterizations and tribological performance of TiN and CrN deposited by cathodic arc plasma deposition process”﹐Wear 199﹐1996﹐pp.132-141