We present a verification methodology for analysing the decision-making component in agent-based hybrid systems. Traditionally hybrid automata have been used to both implement and verify such systems, but hybrid automata based modelling, programming ...

We present a verification methodology for analysing the decision-making component in agent-based hybrid systems. Traditionally hybrid automata have been used to both implement and verify such systems, but hybrid automata based modelling, programming ...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...

We present a verification methodology for analysing the decision-making component in agent-based hybrid systems. Traditionally hybrid automata have been used to both implement and verify such systems, but hybrid automata based modelling, programming ...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...

We present a verification methodology for analysing the decision-making component in agent-based hybrid systems. Traditionally hybrid automata have been used to both implement and verify such systems, but hybrid automata based modelling, programming ...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (xn) there exists a subsequence xd, x2d, x3d, ..., xkd, for some positive integers k and d, such that |∑ki=1xi·d| >C. The conjecture has been referred to as o...