Selected Article



A Study for Solid State Electrolyte in the Lithium Ionic Batteries


[[abstract]]LiTi2(PO4)3的結構是一個NASICON-type的網狀結構,在室溫時是一個低導電度的固態電解質,而有文獻中提出了以Al+3及Si+4來取代Ti+2及P+5,可提高其離子導電度。 在(Li,R)1+x(Ti,M)2(SixP3-x)O12(R=Mg、Ca或稀土金屬; M=Al、Sc或過度金屬)組成中,藉由不同離子的取代來改善其孔隙度及離子結構,來達到提高導電度的目的。 本研究及是將MgO及Al2O3加入LiTi2SixP3-xO12的基材中,來觀察對導電度的效應。我們由LCR Meter來量測-20℃~100℃的導電度,得之確實可提高其導電度到10-3Scm-1以上。

[[abstract]]LiTi2(PO4)3 with the NASICON-type crystal structure is one of the promissing Lithium-ion conductive solid electrolytes. Without any cation substitution, LiTi2(PO4)3 has been reported to have a very low ionic conductivity at room temperature. However, if Al+3 and Si+4 partially replace Ti+4 and P+5 into this Lithium-containing crystal structure, its ionic conductivity is significantly increased. The system(Li, R)1+x (Ti, M)2 (SixP3-x)O12(R= Mg, Ca, and rare earth metal;M=Al, and transition metal)was studied. Through substitution of different ions, the ionic conductivity of this Lithium-containing battery was systematically measured at various(-20℃<100℃). The transport mechanism of Lithium ion was explained. In this study, MgO and Al2O3 are introduced LiTi2SixP3-xO12 crystal structure to observe its effect to the ionic conductivity. It is found that the ionic conductivity increases up to 10-3 Scm-1。

[[note]]1. 洪為民, “方型二次鋰離子電池產品、應用與市場”, 工業材料, 130期 P-88(1997) 2. 楊家諭, “二次鋰離子電池性能介紹”, 工業材料, 126期 P-115(1997) 3. 姚慶意, “鋰離子電池新技術簡介”, 工業材料, 131期 P-161(1997) 4. 姚慶意, 陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 110期 P-57(1996) 5. J.O. Besenhard, M. Hess and P. Komeda, Solid state Ionics, 40 ༁, (1970) 525. 6. M. Lazzari and B. Scrosati, J. Electrochem. Soc. 127(1980)773. 7. K. Mizashima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Solid State Ionics, 15(1980)783. 8. R.J. Gummow, M.M. Thackery, W.I.F. David and S. Hull, “Structure and electrochemistry of Lithium cobalt oxide synthesised at 400℃”, Mat. Res. Bull, 27(1992)327. 9. F.M. Gray, “Solid Polymer Electrolyte”, (1991). 10. G.E. Wnek, K. Gault, J. Serpico and C.Y. Yang, “Second International Symposium on Polymer Electrolytes”, (1990)73. 11. H. Wiedersich and S. Geller, in:”The Chemistry of Extended Defects in Non-metallic Solid”, ed. L. Eyring snd M. O’keefe, North Holland, Amsterdam, (1971). 12. O.W. Johnson, “One-dimensional diffusion of Li in Rutile”, phys, Rev. 136(1964)284. 13. U. Von Alpen, A. Rabenau and G.H. Talat, Appl. Phys. Letters, 30(1977)621. 14. C.O. Tiller, A.C. Lilly and B.C. Laroy, “Ionic conduction in LaF3 thin film”, phys. Rev. B8(1973)4787. 15. J.N. Bradley and P.D. Greene, Trans. Faraday Soc. 62(1966)2069. 16. J.N. Bradley and P.D. Greene, Trans. Faraday Soc. 63(1967)424, 2516. 17. K.Otto, phys, chem. Glasses, 7(1966)30. 18. J.P. Malugani and G. Robert, “Conductivite ionigue dans Les verres LiPO3-LiX(X=I, Br, Cl)” Mater. Rev. Bull. 14(1979)1075 19. A. Kone, B. Barrau, J.L. Souquet and M. Ribes, “Structure et conductivite electrique de verres appartenant au systeme Li2Si2O5-Li2SO4”, Mater. Rev. Bull. 14(1979)393. 20. S. Prabakar, K.J. Rao and C.N.R. Rao,”A mas NMR investigation of lead phosphosilicate glasses:The nature of the highly deshielded six-coordinated Silicon+”, Mater. Rev. Bull. 26(1991)285. 21. J. Maier, “Superionic Solids and Solid Electrolytes”:Recent Trends, eds. S. Chandra and A.L. Lasker,(1989)New York:Academic Press, 137. 22. N.F. Uvarov, V.P.Isupov, V. Sharma and A.K. Shukla, “Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes”, Solid stste ionics, 51(1992)41. 23. T. Jow and J.B. Wagner, J. Electrochem. Soc. 126(1979)1963. 24. J.P. Duchange, J.P. Malugani and G. Robert, “Microtechniques, International Symposium”, Mulhouse, France(1981)52. 25. J.P. Duchange, J.P. Malugani and G. Robert, Prog. Batteries Sol. Cells, 4(1982)46. 26. J.P. Duchange, J.P. Malugani, B. Fahys, R. Mercier, G. Robert, S. Baudry, J.P. Gabano, “De Neuveaus verres conducteurs Par L’ion Lithium et Leurs Application dans des generateurs electrochimiques”, Solid state Ionics, 9-10:pt.1(1983)659. 27. J.P. Gabano, “Applications of Glasses in all Solid state Batteries”, A review, NATO ASI ser. E, 92:Glass(1985)457. 28. J.R. Akridge and H. Vourlis, “Performace of Li/TiS2 Solid state batteries using for solid batteries with a protonic conductor(SPC)as electrolyte”, Solid state Ionics, 28-30:pt.1(1988)841. 29. A. Levasseur, M. Kbala, P. Hagenmuller, G Couturier and Y. Danto, “Elaboration and charaterrization of Lithium conducting thin film glasses”, Solid state Ionics, 9-10:pt.2(1983)1439. 30. K. Kanehori, K. Matsumoto, K. Miyauchi and T. Kudo, “Thin film solid electrolyte and its application to secondary Lithium cell”, Solid state Ionics, 9-10:pt.2(1983)1445. 31. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury and C.F. Luck, “Fabrication and characterization of Amorphous Lithium Electrolyte Thin Films and Rechargeable Thin Film Batteries”, J. Power Sources, 43-44(1993)103. 32. K. Ad, Y. Saito, T. Asai, H. Kageyama and O. Nakamura, “Li+-ion conductivity of Li1+xMxTi2-x (PO4)3(M:Sc+3, Y+3)”, Solid State Ionics, 53-56(1992)723. 33. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, “Electrical property and sinterability of LiTi2(PO4)3 mixed with Lithium salt(Li3PO3 or LiBO3)”, Solid State Ionics, 47(1991)257. 34. Y. Ando, N. Hirose, J. Kuwano, M. Kato and H. Ohtsuka, Phosphorus Res. Bull. 1(1991)239. 35. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, J. Electrochem. Soc. 136(1989)590. 36. J. Fu, “Fast Li-ion conduction in Li2O-Al2O3-TiO2-SiO2-P2O5 Glass-ceramics”, J. Am. Ceram. Soc. 80(1997)1901. 37. S. Elliott, “Frequency-dependent conductivity in ionic glasses:A possible model”, Solid State Ionics, 27(1988)131.